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Lessons from a time-dependent model 

Csaba Balrizst 
Central Research Institute for Physics, POB 49, H-1525 Budapest, Hungary 

Received 31 March 1989, in final form 28 March 1990 

Abstract. A particle is moving in an external field described by a stationary at- 
tractive potential and a time-dependent repulsive potential. It is shown that exact 
solutions of the time-dependent SchrZjdinger equation can be found for separable po- 
tentials. For a particle initially in a bound state the probability of remaining bound, 
and its energy spectrum in caSe it escapes, are calculated. 

1. Introduction 

In the present work a simple time-dependent model [l] will be applied and examined in 
some detail$. A two-term potential is introduced which consists of an attractive time- 
independent part and of a repulsive, time-dependent part. In the beginning there is a 
bound state in the attractive potential. As one gradually strengthens the repulsion, the 
pole corresponding to the bound level moves towards the origin of the complex energy 
sheet and then becomes a resonant pole. We maintain the repulsion at  a maximal level 
for a certain time, and then gradually switch it off. We are studying the dependence 
of the behaviour of a particle initially in a bound state on the parameters of our 
potential. Namely, we calculate the probability of staying in the bound state and the 
energy spectrum in case the particle escapes. 

The potential is chosen to be separable, so we can solve the dynamical problem 
exactly. This is one of the most important features of our model, because there are 
very few methods to solve an explicitly time-dependent problem. 

The model may have physical applications. The problem of a bound state becom- 
ing a quasistationary state might be related to heavy ion-heavy ion collisions and to 
laser-induced emission in atomic and solid state physics. 

A further application may be the comparison of the method of separable poten- 
tials with the approximate methods for time-dependent external fields and for critical 
states. 

2. Formulation 

Let the Hamiltonian of a particle moving in a time-dependent external field be 

A(t) = A, + V ( t )  = I;To + A1Vl + A2(t )V2 = fi, + V2@) (2.1) 
t Present address: Department of Physics 009-00, Temple University, Philadelphia, PA 19122, USA. 
$ The formulation of the problem is based on [I], except for the shape of the time dependence of 
the Hamiltonian. In section 3 the idea of RCvai to calculate the time-dependent states by solving a 
Volterrbtype equation WM also used. 
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where I?, = fi2 is the Hamiltonian of the free particle ( h  = 2m = 1). In (2.1) the 
external potential V ( t )  consists of two parts, V, and V2, which are separablet: 

Vl = lPl)(Pll V z  = lPZ)(PZl* (2.2) 
This condition will give us a great advantage when we solve the dynamical equation. 

The time-independent part of the potential is attractive while the time-dependent 
one is repulsive: 

A, < 0 ( 2 . 3 ~ )  

A 2 ( t )  > 0 

A 2 ( t )  = 0 otherwise. 

if 0 < t < T 
(2.3b) 

Equation (2.3b) shows that  at the beginning ( t  = 0) the Hamiltonian contains only an 
attractive potential and there is a repulsive perturbation between the times zero and 
T. 

The state of a particle moving in the potential is described by the Schrodinger 
equation 

The initial condition is 

Is(0)) = I4B) 

where 14B) is a bound state of Ei(0) = fil: 

Eil14B) = EB14B). (2.6) 

The value of A, will be chosen so that  IdB) is the only bound state of fi,. Then this 
bound state with the scattering states of H, 

( 2 . 8 ~ )  

(4; /$: I )  = 6 ( k  - JG') (4; I4B) = 0. (2.8b) 

The probability that the particle will be in the bound state after the perturbation (at 
t -.$ a) is 

WB %(O0) = WB(T) = I(4BIe(T))12. (2.9) 
The  probability of detecting the particle infinitely far from the potential region with 
momentum le when t -.$ oa is 

wh E W k ( a )  = w ~ ( T )  = l(4~l*(T))12. (2.10) 

To calculate the probabilities wB and wk one has to  know the state Iq(T)). 

t Note that PI are not spatial variables; (TIP,)  = f (r ,P , )  is the function related to I@,) in r repre- 
sentation where r can be a spatial variable. 
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Figure 1. The time dependence of the strength of the repulsive part of the poten- 
tial (5.1). 

3. Solution 

In this section we show how to calculate the state 

I*(T)) = w, o)lq(o)) = f(T O)I4B) 

a 
where 

i-f(t,t‘) = Ei(t)f(t,t’) at 
a i-f(t,t’) = --f(t,t/)fi(t’) 
at’ 

f ( t , t )  = i. (3.2b) 

f ( t , t ’ )  is the time-evolution operator associated with f i ( t ) .  It has  the important 
property 

f(t,t’) = f(t ,  t”)f(t”,t’) (3.3) 
and also satisfies the following equation: 

f(t,t’) = fl( t , t’)  - i dt”~,~t , t”)”(t”)f \ ( t”, t ’ )  i: (3.4a) 

= f l ( t ,  t’) - i 1: dt” f(t,t”)~~(t”)f,(t”, t’) (3.4b) 

is the time-evolution operator associated with the time-independent Hamiltonian fi,. 
Using equations (3.1) and ( 3 . 4 ~ )  one can obtain a Volterra-type integral equation 

for Iq(t)): 

Is(t)) = f ,( t , t’) ls(t‘))  - i J’ dt”f,(t ,t”)Vz(t”)~\k(l”)) (3.6) 
t ‘  

where t’ _< t” 5 t .  For further specialization of the time dependence of the potential 
p2(t) = A2(t)Vz we assume that A 2 ( t )  is a continuous and differentiable function 
which has a non-zero constant part. The length of the constant part of the potential 
is denoted by r ,  and rl, rz denote the switch-in and switch-off times of the potential, 
respectively. The meaning of the parameters of the function A,(t) can be seen in 
figure 1. 
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Taking into account (3.1), (3.3), (3.6) and the shape of the time dependence of the 
potential it is advantageous to write the state I\Ir(T)) in the following form: 

1V)) = iv, T - rz)i'(T - 7 2 ,  ~ , ) Q T l ,  O)I+B) (3.7) 

and to  calculate 16(T)) in three steps. In the first step substituting t = T~ and t' = 0 
in (3.6) and using (3.5), (2.6) and (2.2) one arrives at  

-iEBT1 - i IT' dt" fl(rl, t")IPz)z2(t") ( 3 4  
0 

Iw-1)) = e 

where the notation 

d t )  = ~ Z ( t > ( P Z l W )  

has been introduced. On the other hand, multiplying (3.6) with A2(t)(/3,1 from the 
left, in the case of 0 < t < 7, and t' = 0 we get a Volterra-type equation for zz(t) :  

Since the Dirac brackets in (3.9) are known, this equation can be solved, at  least 
numerically. (For further details, see [l].) If we know zz(t) ,  we can calculate (9(r1)). 

(3.10) 

The following step is to calculate 

72)) = m - ~ 2 > ~ 1 ) l Q f ( ~ J ) .  

In the interval (rl, T - rZ) I? is time independent. Therefore 

F(T  - r2, 71) = e-ifi(T--7z-T~) - - e-ifir (3.11) 

where 

fi = fi0 + A, P, + Azmar i;. (3.12) 

The effect of the operator (3.11) on Iq(rl)) can be calculated so that one can find 
I\k(T - r2)). We shall give a more detailed analysis of this calculation in the next 
section, 

The last step consists in looking for 

I\Ir(T)) = f ' ( T , T -  rz)19(T- rz)) .  (3.13) 

We use (3.6) again, substituting t = T, t' = T - rz and get 

T 

T - ~ 2  
IIY(T)) = f , (T,T - r2)lIY(T - r z ) )  - i /  dt" fl(T,tf')l~z)Xz(t''). (3.14) 

The definition of X z ( t )  is formally the same as that of z2 ( t )  but X , ( t )  is the solution 
of the following equation: 

(3.15) 
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where T - r2 < t < T and where the Dirac brackets are again known and the limits 
of integration differ from the earlier ones in (3.9). After one finds X , ( t ) ,  it is possible 
to calculate the state 1Q(T)) from (3.14). 

Note that using the fact that the potential is separable we obtained the equa- 
tions (3.9) and (3.15), which are equations for complex functions with one variable 
instead of the dynamical equation (3.6),  which is an operator equation with mixed 
spacetime variables and which may lead to an integrodifferential equation in the space- 
time coordinates. Equations (3.8), (3.10) and (3.14) are exact equations for the time- 
dependent state. If (3.9) and (3.15) are solved numerically-which is generally the 
case-the method gives I*(??)) with arbitrary accuracy. 

4. The potential jump 

In this section we shall consider the special case when the repulsive potential jumps up 
from zero to the value A, maxvz and then falls down to zero. Therefore now, T~ = 72 = 0 
and T = r.  We have to  calculate the matrix elements of the operator in 

(4.la) 

(4.lb) 

To evaluate these expressions let us write the operator e-iHr in the form of a Fourier 
integral: 

dw e-iwr G(w + ic) 

where 

G(w) = (w - i q - 1  (4.3) 

is the resolvent operator associated with fi. It is known from stationary scattering 
theory that the matrix elements of G(w) appearing in (4.1) may be continued an- 
alytically into the complex w plane. This plane has two sheets; a physical and a 
non-physical sheet. There is a cut separating the two sheets along the positive real 
axis. The bound state poles lie on the negative real axis, and the resonance poles in 
the fourth quadrant of the non-physical sheet. Taking advantage of this analytical 
structure, we shall deform the path of integration in (4.2) because it is complicated 
to calculate the integral along the real axis. Using the residuum theorem we obtain 

0 0 [, dwe-iwr G(w + ic) = L" 

1'" dw e-iw'G(w + ic) = 1 

dw e-iwrG(w) - 2ni res {e-iwrG(w); 3f) .  (4.4) 

The term res {e-iwrG(w); 3f)  denotes the residua of the poles which are on the nega- 
tive real axis or in the third quadrant of the physical sheet. In (4.4) we used the fact 
that the integral on the infinite circle in the lower half-plane vanishes because of the 
factor e-iw7. Similarly 

-iw 
dw e-iW'G(w) - 2ni res {e- iw'G(~);  41) (4.5) 
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where res{e-iWrG(w);41} are the residua of the corresponding poles in the fourth 
quadrant of the non-physical sheet, including the positive real axis. We chose the 
parameters of the pptentials so that H has no bound states. This means that the 
matrix elements of G ( w )  have no poles on the negative axis in the physical sheet. So 
res {e-'"'G(w); 31) equals zero. 

Then adding (4.4) and (4.5) 
1 -io0 

= -- (1 2n 
dwe-iw2{GT(w) - G l ( w ) }  + 2ni res {e-iwrG(w); 4l}). (4.6) 

The notations Gt and G1 have been introduced to make a difference between the 
values of G in the different sheets of the plane w .  Substituting w = -in in (4.6) we 
get 

(4.7) 

This expression shows that because of the factor e-n7 the integrand decreases quickly 
if r is not very small. On the other hand, changing the integration variable n + ( / r  

The integral goes to  zero when r goes to  infinity. So, for r 3 00 the residua must go 
to a non-zero value in the case of wk, because wk is non-zero if r - 00. So if r is 
large then the integral is small, compared with the residua in the case of calculating 
w k ,  On the other hand, if r is large then the integral might be neglected in the case 
of wB if there is a pole far enough from the positive real axis. (Note that the amount 
of work of numerical calculation of the integral in (4.8) is independent of the value 
of r.) Using (4.8) one can write 

+ ~ ~ e - ~ ~ J ~ 2 ~ i  res { ( ~ ~ ~ G ( u ) ~ ~ B ) } w = w i  (4.9) 

where w j  denotes the location of the j t h  pole belonging to  the matrix elements of 
G ( w ) .  On the other hand using that Vz is separable one can prove that 

G ( 4  = G I ( 4  + Gl(~)IP2)(~-1(~))z2(Pz1Gl(~) (4.10) 

where 

G1(w)  = (U - HJ1 (4.11) 

is the resolvent operator of k1 and 
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where Go is the free Green operator. Using (4.10), (4.11) and taking into account 
(2.6) and (2.7) we get: 

The first term of (4.13) vanishes because of the orthogonality (2.8b). That is why it is 
sufficient to deal with the second term in (4.13). For simplicity, we take into account 
only one zero of det M ( w )  at E ,  - $',. Then one can write (see appendix A) that 

(4.14) 

where f ( w )  is a regular function. So in the case of ak: 

Neglecting the integral term in (4.9) and taking the absolute square of (4.15) the 
interference term in w, is proportional to e-rlr sin(k2 - E l ) r .  These oscillations can 
be seen in the energy spectrum if r rz l';' - = qire. If r >> rlife the oscillations die out. 
If T 4 03 the integral in (4.9) and the term in (4.15), which is proportional to e-r1r/2, 
goes to zero, so we get the well known Lorentz spectrum. In the case of calculating 
U,  one has to substitute E, for I C 2  and 14,) for I*;) in (4.13). 

In this case the expression (4.13) has no singularity at  w = EB (for details see 
appendix B) and after carrying out the integration the first term gives zero. So the 
first term of (4.13) vanishes again. Then the residue is proportional to e-rlT : 

e - r ~ ~ e - i E 1  T 

f (E ,  - $',) + integral. 
E, - iir, - E, uB = l(4BlpZ)12 (4.16) 

This formula shows that if the first term dominates then the decay is exponential. 
This is the situation when r w rlife. For r - 00 the integral term dominates (the 
residue term is proportional to e-r1r) and uB - ~ - ~ f ~ ,  which is a deviation from the 
exponential law. (It can be proved that the integrand in (4.8) is proportional to r - l l2  
when r goes to infinity.) Formulae from (4.2) to (4.8) and (4.10)-(4.12) are valid 
also in the general case when rl and rz are non-zero and T # r. Then the operator 
G ( w )  should be calculated between states more complicated than and I&), The 
evolution of the wavefunction during the time intervals rl and rz, when the potential 
is explicitly time dependent, can be followed only numerically. The relevant results 
will be presented in the next section. 
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5. Numerical results 

5.1. Specialization of the potential 

In this section we shall show that with the aid of the model derived above one can 
study the relations between the parameters of the potential and the probabilities wB 
and wk.  In subsection 5.4 we shall compare the model with an approximate method. 

We chose the following time dependence for the potential V2( t )  = A2(t)Vz: 

if O < t S r ,  

(5.1) 
A2(t) = A2max i f r l < t ~ T - r 2  

if T - rz < t 5 T i, otherwise. 
A, max sin2[(t - T)r/2r2] 

The form factors of the potentials were s-wave Gaussians: 

This choice made the analytic evaluation of all the necessary matrix elements possible. 
The range p1 of the attraction was chosen to be a unit in an arbitrary dimensionless 
scale. With this choice we fixed the scale of distances and also of the energy in a 
dimensionless scale ( h  = 1, 2m = 1). The strength A, of the stationary potential was  
fixed to  give E,  = -0.49. 

Numerical experiences show that it is enough to take into account two poles 
throughout the calculations. These poles are moving in the w plane while the PO- 
tential is changing. In the beginning, one of the poles is on the negative real axis in 
the physical sheet and the other is in the fourth quadrant of the non-physical one, 
relatively far from the real axis. When the repulsion is maximal, the two poles are 
at their turning points Ej  - $irj ( j  = 1,2) in the non-physical sheet. If the pole 
which came from the lower part of the plane does not approach the first one-which 
is relatively near to the positive real axis-then it is enough to  take into account the 
residuum belonging to the pole which is associated with the decaying bound state. 
During the application of the model we shall mainly deal with such cases. 

Then we chose the range ,Bz of the repulsion controlling the distance of the turning 
point of the pole corresponding to  the starting bound state from the positive w axest. 

Accordingly we had three different cases of resonance: 

the ‘broad) case: I?, = 1.19, E ,  = 0.84 when pz = 2.0 and AZmax = 1.6 
the ‘normal’ case: r, = 0.12, E ,  = 0.80 when D2 = 1.8 and AZmax = 1.4 
the ‘narrow’ case: I?, = 0.011, E ,  = 0.63 when p2 = 1.6 and XZmax = 1.12. 
The maximal strength XZmax of the repulsion controlled the distance from the 

other pole. The paths of the poles while 0 < t < T, or T - r2 < t < T, and its position 
while T, < t < T - r2 can be seen in figure 2. One can see that in the ‘broad’ case 
the other pole approaches the first one and will have an effect on the probabilities wB 
and wk.  

t We remark that in s-states the ‘bound-state-pole’ goes from the negative real axis of the physical 
sheet onto the negative real axis of the non-physical sheet while the repulsion grows. Then the pole 
sinks into the third quadrant of the non-physical sheet and goes over to the fourth quadrant. The 
location of the point where the pole leaves the axis and the distance from the axis in the fourth 
quadrant of the non-physical sheet is related to p2. 
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Figure 2. The paths of the poles associated to the three different cases of resonances 
in the plane I;  = fi. ‘broad’ case; ‘normal’ case; 0 ,  ‘narrow’ case. (see 
section 5.1). The path of the second pole of the ‘narmw’ case is absent because 
that lies very far from the axes. At the points marked by large symbols (+, *, 0) 
Xz = Xzmax. (The step of Az is 0.1.) 

0.00 

-4.00 
n 

B 
W 

G 
3 

-1200 ’ I I I 
c.00 4 ct0 8 00 12 00 

T/TI I f e  

Figure 3. The time dependence of the decay in the three different case8 of res* 
nances. +, ‘broad’ case; *, ‘normal’ case; 0, Inamow’ case (WB is defined by (2.9)). 

5.2. Decay of the bound s tate  

In the first application we study the exponential decay law. This is a typical one-pole 
rule which is valid in the case of the decay of a quasistationary state. The illustration 
of this can be seen in figure 3. In the ‘broad’ case-when the second pole gets close 
to  the first one-the decay is not exponential. In the ‘normal’ and ‘narrow’ cases 
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we can say the following. As was seen from (4.16) wB is proportional to e-r1' if 7 

is around several times T , ~ ~ ~ ,  This property coming from the operator e-ifir holds 
even if r1 and T~ are non-zero. Results of this type are shown by the straight lines of 
figure 3. In the 'normal' case at  large values of r one can see a deviation from the 
exponential. Numerical experiences show that even if T = 0 while r, + r2 % qife the 
decay is exponential. 

0.060 7 t 

# 

0.040 ' 
0.0 2.0 4.0 6.0 €3.- 

- I!- 

, / l lLe  
Figure 4. 
(TI + 72)/qife = 16.5 = constant (normal case, ?ife 3 I-;'). 

The dependence of the decay on the switch-times when T = 0 and 

In the case of r << qife the transients play a significant role. It is surprising that 
if r << r,ife the value of wg as a function of r is not even monotonous. 

Our model gives the possibility to study the dependence of wB and wb on the 
switch-times rl and r2. So we chose r = 0 and r1 + r2 = T = constant. The results 
are shown in figure 4. We see that if rl = r2, the probability of staying in the bound 
state is the least. So, the time-symmetric perturbation disturbs the system the most. 
A further result is that wB seems to depend only on the combination IT1 - r21 of the 
parameters r1 and r2 if r = 0. Also, the fast rise of the potential results in more 
particles coming out with high energy from the potential region. So the switch-in 
time seems to  be important from the point of view of the spectrum. 

It is possibile to study the critical states in the model. We call a level critical if 
the associated energy is zero. If the (real part of the) energy of the level is a bit under 
or above zero then the level is called sub- or supercritical, respectively. (We remark 
that according to Zeldowich near the critical state the Dirac equation is related to 
a non-relativistic, local well-barrier potential [2].) Simulating a subcritical state we 
chose the parameter XZmex so that the bound-state level got close to the zero value. 
The level spent r time in the subcritical state and then went back to the starting 
energy. In the supercritical case the level surpassed the zero by a small value. The 
probability wB was calculated for different values of r (7, = r2 = constant). The 
results are in figure 5 .  It is clearly shown that particles decay from the supercritical 
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0 0  4 1GC 20; 300 400 5d0 6dG 

T/%fe  

Figure 5. The time dependence of the decay from subcritical (*) and supercriti- 
cal (+) states. The broken curve indicates exponential fitting. 

level almost exponentially, but practically they stay at the subcritical level. The small 
decay rate in the subcritical case is due to the non-zero speed of the changing of Vz( t )  
in time. 

5.3. The energy spectrum 

The spectra associated with the the three types of resonances differ from each other. 
The most special feature of the spectra of the ‘normal’ and ‘narrow’ cases are the 
oscillations (see figure 6). For T~ = T~ = 0 (i.e. the jump case) we have already 
shown the presence of the oscillations in section 4. The numerical results show that 
if T~ r* rz << T (i.e. a jump situation) then the period of the oscillation of the energy 
spectrum is around T w T = T +  T~ + T ~ .  If T w rl w rZ then the frequency is between 
T and T. There are oscillations in the spectrum if T << r l ,  rz and even if T = 0. 

It  is interesting to follow how a stationary spectrum develops while 7 is growing. 
If we imagine the time-development of the spectrum as a movie picture we see the 
following. Even at  an extra short perturbation (w,  > 0.999) the spectrum is not 
monotonous in any of the cases. There are several peaks going towards the ‘main’ one 
in time. By main we mean the peak which will develop into the stationarious Lorentz- 
like peak at  T = +m. The ‘main’ peak itself is moving from left to right, too, towards 
its final (T = +m) location in the energy spectrum. This ‘main’ peak grows taller and 
slimmer in time. Meanwhile the other peaks turn into oscillations with decreasing 
wavelength and amplitude. The oscillations advances toward the ‘main’ peak both 
from low and high energies until they die out. A t  very large values of r (20, e: 
the spectrum is a well known smooth Lorentzian curve or the superposition of several 
of them. These features are effective in the ‘normal’ and in the ‘narrow’ cases for all 
studied values of the switch parameters. 

Our separable potential model has some special characteristics. One of these is 
that there exists a certain value of k where wk = 0 because (4Jpz) = 0. This is due 
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0.05 I 
0.04 I 

r 1  
0.03 4 
0.02 4 

0.01 

0.00 
0.00 

Figure 6. The typical oscillations of the spectra of the ‘normal’ and ‘narrow’ cases 
(T  < pile, W E  = 2rkw*, wh is defined by (2.10)). 

to the form factor (5.2) used through the calculations. The location of this zero-point 
depends on the value of p2. As p2 increases the zero-point of the spectrum goes toward 
the point E = le2 = 0 and around the value p2 = 1.9 it goes over to negative values 
which are not detectable in the spectrum. That is why in the ‘broad’ case (p2 = 2.0) 
one cannot observe such a point in the spectrum. 

5.4. Test of an approximate method 

In this section we examine the accuracy of a ‘moving-pole approximation’ of [3]. The 
authors set out from the fact that a pole under the real w axis is associated with 
a resonant state which is related with a Lorentz-like spectrum. They substitute the 
moving pole by a set of stationary poles acting at  different times. So the spectrum 
belonging to this kind of poles is a time-average of stationary Lorentz curves: 

Here E(t)  and r(t) give the path of the pole in the w plane and WB(t)  is the probability 
of staying in the resonant state. Taking into account that the decay is exponential in 
the case of one pole we receive an equation for W,(t): 

(5.4) 
.8 
Bt l -wB(t)  = -2r(t)WB(t). 
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6.0 1 

Figure 7.  Comparison of the approximate formula (5.3) with the exact result in the 
‘normal’ case for T > ?i fe .  The full curve is the exact result, wk in (2.10), and the 
broken curve is the approximate formula, Wk in (5.3); W E  = 27rkwk. 

0.60 1 
I 

Figure 8.  The effect of the second pole on the spectrum in the ‘broad’ case. The 
full curve is the exact result, wk in (2.10), and the broken curve is the approximate 
formula, Wk in (5.3); W E  = 2nkwk.  

Now we examine the validity of the above approximation. 
We expect that (5.3) is a good approximation both in the ‘normal’ and the ‘narrow’ 

cases in the jump situation if T >> qite (figure 7), because in the jump case the formula 
(5.3) is proportional to the exact one if T > qife. If T e: T,ife (5.3) is not a good 
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approximation because the integral term of the exact amplitude has not yet died. 
In the ‘broad’ case, for X2max = 1.6, the one-pole approximation fails as we have 

seen earlier. In this case, decreasing we could study when the one pole approxi- 
mation can be applied at all. As we decreased the value of X2max both the distance 
between the turning points of the two poles and the distance between the real w axis 
and the turning point of the second pole increased. So the effect of the second pole 
on the spectrum decreased. One can see the typical effect of the second pole on the 
spectrum in figure 8. 

Appendix A 

By definition 

The definition of M,,(w) can be found in (4.12). On the other hand, from (2.6) it 
follows that 

Multiplying by (pl I and using (2.2) and that (p, 14B) # 0, one obtains 

Substituting (A.3) into the definition of M,,(w) and doing algebraic steps one can 
obtain 

According to (4.13) the resonance pole of G ( w )  must correspond to a singularity of 
M”(w), that is 

det M(w) = (U - E, + $iI’,) g(w) (A.5) 

where g(w) is a regular function (taking into account only one resonance). Subsituting 
(A.4) and (A.5) in (A.1) we get (4.14) where f(w) = (P1Ido(w)Go(EB)Ipl)/s(w). 

Appendix B 

In calculating uB one has to evaluate 
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The first term of (B.2) is finite if w EB. 
With G o ( w )  - Go(EB) = -(w - EB)GO(w)Go(EB), the second term becomes 

which is also finite for w E,. 
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